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CHAPTER V  DIFFUSION 
 
 
 

 
 

5.1 Fundamental equations of diffusion 
 

Diffusion phenomena, i.e., the migration of atoms in the lattice, regulate the kinetics for many 

material processes, such as phase transformations, thin film deposition, recrystallization, and plastic 

deformations. Diffusion processes can be described using expressions of Fick's first and second laws. 

 

5.1.1 Phenomenological equations 

 

a) Fick's First Law 

 

 

 

 

where   # atoms flux of atoms A 

  # atoms concentration per unit volume of A 

  diffusion coefficient of A 

 

 

b) Fick's Second Law (conservation equation) 

 

Eliminating JA between (5.1) and (5.2) and supposing that DA is constant, 

 

 

which is called Fick's Second Law and has the same mathematical form as the heat equation.  

This partial differential equation has been solved for many boundary conditions, though its use in 

metallurgy is relatively limited, as demonstrated in later sections of this chapter.

(5.1) 

(5.2) 

(5.3) 
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Proof for the one-dimensional case 

 

a) Fick's First Law 

 

flux of atoms A going through a unit surface 

perpendicular to the axis Ox per unit time. 

 

 

Let a and Γ be the distance and frequency of the atomic 

jumps, respectively. 

 

Then: 

 

 

 
 

 

From which we derive:  

 
Figure 5-1: One-dimensional flux 

 

 

c) Conservation equation 

 

 

 Let n the number of atoms A in dV 

  

  
 

 where                           , σ is a source term. 
Figure 5-2: Flux through a volume element dV 

 

 

5.1.2 Solutions to Fick's Second Law 

 

We want to obtain a solution of form C(x,t) with specific boundaries and initial conditions. 

 

a) Thin layer of an element B completely soluble in A 

 

For example, B=A* can be a radioactive isotope of A. We have a Gaussian symmetric distribution. 
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In t=0, C=0 except in x=0 where we have M atoms. 

 

 

Therefore:  

 

 

with  

 

 

b) Surface coating 

 

The solution is identical to the one for a thin layer, as seen in a). 

 

 

  

 

  

 

 

 

 

 
Figure 5-4: Surface coating 

 

c) Interdiffusion 

 

 for  

   for  

   
 

 

where                                 is the error function. 
 

 

Figure 5-5: Concentration distribution during interdiffusion 

 

 

Figure 5-3 : Symmetric distribution 

(5.4) 

(5.5) 

(5.6) 
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d) Diffusion from a surface 

 

 

 

 
 

 

is the initial concentration per unit volume of the species 

that diffuses, and is the surface concentration, e.g., in 

carburization. 

 
Figure 5-6: Distribution in the case of  

diffusion from a surface. 

 

 

5.2 Diffusion coefficient and random motion 
 

This section describes how the diffusion coefficient can be derived from statistics laws. First, we 

suppose that the atoms are located in a lattice. Then, the migration directions are defined by vectors 

corresponding to the close-packed directions. 

 

For instance, in the BCC structure:  
  

 

 

 

and in the FCC structure:  
  

 

Figure 5-7: Random path of an atom. 

 

(5.7) 
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We have:  

 

but the mean free path  

The second term in equation (5.9) is zero since it is always possible for any step to find two 

opposite steps  

 

 
 

with δl = length of a jump 

 n = number of jumps in time t 

 Γ = jump frequency 

but:          and in a cubic crystal:  

 

from which    

 

 

and thus  

 

 

Let us consider the particles that have traveled a path of  ± Δ(with                  ) in the time t and 

calculate the flux of these particles through a surface S. 

 

 

 

 

 

  so that  

 

 
 

Einstein obtained this result in 1905,                     with the quadratic path equaling 2 Dt. 

 

  

Finally:  

 

 

 

(5.8) 

(5.10) 

(5.11) 

(5.12) 
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This result is valid for a simple cubic crystal. 

 

For a BCC crystal:   

 

For an FCC crystal:  

 

Diffusion depends on the temperature:  since . 

 

Debye atoms  where is the frequency of vibration of the 

P is the probability that the atom has sufficient energy to jump from one site  to the other. 

 

 

5.3 Self-diffusion 
 

5.3.1 The mechanisms of diffusion 

 

How do atoms migrate within a crystal? Figure 5-8 schematically shows the principal diffusion 

mechanisms in a monoatomic crystal. We can list the following mechanisms: 

 

1) Simple switch: the least probable (for example                   in Cu). 

2) Cyclic switch: requires the simultaneous motion of several atoms. 

3) Vacancy mechanism: the most probable. The atoms diffusing take the position of a vacant site. 

4) Interstitial mechanism: This requires forming a valid self-interstitial for the interstitial impurities 

O, C, and N, which is a probable mechanism in BCC metals. 

5) Interstitials exchange: the mechanism relies on low probability correlated motion. 

6) Crowdion: low probability correlated motion. 

 
Figure 5-8: Diffusion mechanisms 

 

(5.13) 
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5.3.2 Vacancy mechanism 

 

The relation (5.12) is valid for interstitial diffusion but not quite for the diffusion of substitutional 

atoms. This type of diffusion needs a free site to happen; in other words, it requires the presence of a 

vacancy. Nevertheless, once the jump has occurred, it is highly probable that the atom diffuses back 

to the site it has just left. To calculate the effective displacement of an atom throughout the crystal, 

we have to consider the probability of multiple jumps. Thus, an atom can jump to a nearby vacancy 

site if it overcomes the potential threshold for migration. The probability of the jump is given by 

. The probability of finding a vacancy in an adjacent site is given by where 

is the concentration of vacancies, and z is the number of close neighbors. Thus, considering the 

density of vacancies at equilibrium: 

 

 
 

 

and then  

 

 

Considering that  

 

 
 

with  

 

is called self-diffusion energy. This quantity can be measured in diffusion experiments (for 

example, using radioactive trackers), which characterize diffusion's temperature sensitivity in a 

monoatomic crystal. 

 

 

5.4 Applied force to the diffusing particle: Einstein's equation 
 

Consider first the random motion of a particle in a potential field characterized by jumps thermally 

activated (figure 5-9 a). The average speed of atoms is given by: 

 

 

 

 

where  

 

 

with being the frequency of vibration of the atom in its potential well (Debye 

frequency). 

(5.14) 

(5.15) 

(5.16) 

(5.17) 
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Figure 5-9: a) Diffusion is performed by jumps in a periodic potential. b) Effect of the application of a force 

 

The factor of 1/2 comes from the fact that an atom cannot simultaneously perform a positive and 

negative jump. In these conditions, . On the other hand, if a force is applied to the atom, this 

force is at work during the displacement and determines an inclination of the potential curve (figure 

5-9 b) so that the following expressions can be written: 

 

 

 

 

and the potential is modified of  

 

We conclude: 

 

 

 

 

 

and letting  

 

 

Expression (5.18) is equivalent to expressing the force F arising from a potential. Consider the 

combined effect of a concentration gradient and a force leading to a steady state condition. The flux 

of particles due to the force F is given by: 

 

 

The concentration gradient leads to an opposite flux. 

 

 

 

(5.18) 

(5.19) 
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Figure 5-10: Concentration gradient due to an external force 

 

 

If F derives from a potential:  

 

We suppose that the distribution of concentration at equilibrium follows a Boltzmann distribution 

adjusting to the variation of local potential determined by the introduction of the external force F: 

 

 

 

 

Thus:      

 

 

Using this expression for the concentration in (5.19), we obtain the following: 

 
 

which is the expression (5.18) derived previously. 

 

As an example, we can show (in exercises, Nerst law) that an electric field E introduces an electric 

 

current: 

 

From which we can extract the electric ionic conductivity:    

 

In the case that F is due to chemical forces, we let: 

where μA is the chemical potential of A. 

 

For an ideal solution, for instance, we show that (see Chapter XI): 

 

 
 

where is the relative concentration of species A. 

 

Let us consider two atomic species, A and B, of concentration and and where is the relative 

concentration of species A. We show the development of species A here. 

(5.20) 

(5.21) 
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with  

 

is the intrinsic diffusion coefficient, sometimes called the Dehlinger-Darken diffusion 

coefficient. Therefore, the diffusion equation becomes: 

 

  
 

In the general case, the driving force of diffusion is not the concentration gradient but the gradient of 

the chemical potential. 

 

 

5.5 Diffusion couple: the Boltzmann-Matano method 
 

Review of scaling laws. Example: gravitational law. 

 

 

 

 

Consider planet 1 of mass m orbiting around the Sun (mass M), given              

 

Consider now the scaling law: 

 

We then have: 

 

 

 

 

 

 

 

 

 

Consider another planet 2. 

 
 

 

 

 

Then, if G=G', i.e., , and , is described by the same equations, the two planets 

have similar trajectories. In particular: 

 

 

 

(5.22) 

(5.23) 
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This is Kepler's third law. 

 

Similarly, we find a similar criterion in fluid mechanics with Reynold's number. 

 

 

 

We apply the method described above to the problem of interdiffusion between two materials, A and 

B, joined together in a diffusion couple. First, we determine the diffusion coefficient , which 

characterizes the diffusion from A to B or vice versa. 

 

 
 

 

 

Changing the variable in  

 

  

 

 

 
 

Consider a new concentration distribution that obeys the same diffusion equation but with initial 

conditions. 

 

 

 

 

 

 

From (5.24), we have that: 

This similarity can also be deduced from the expression (5.11) for the mean free path: 

 

 
 

This cannot be derived in any other way, given that we derive the mean free path from the Gaussian 

probability distribution, a diffusion equation solution. 

 

As for gravitation, if D=D' then λ2 /τ =1. The diffusion processes are determined by initial conditions 

and give the same results on different scales. 

 

We have:  

 

(5.24) 

(5.25) 

(5.26) 
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This brings us to solve equation (5.23) with the reduced variable  

 

 

 

 
 

We obtain: 

 

 

 
 

Writing this expression again in x and t variables: 

 

 
 

which can be easily measured experimentally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5-11:  Graphical method to determine the diffusion coefficient from the concentration profile of a diffusion couple. 

 

(5.27) 

(5.28) 
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If we integrate from to  so as: 

 

 
 

This condition sets the origin on the λ or x-axis. Moreover, it determines the position of the so-called 

"Matano plane," which separates the two equal areas (shaded area in Figure 5-11). 

 

To determine the diffusion coefficient             from a concentration profile, as shown in Figure 5-11, 

we need to determine the position of the Matano plane graphically and then apply equation (5.28). 

In this expression, the numerator represents the area delimited by the curve , the Matano 

plane, and the lines and . The denominator represents the slope of the tangent in point 

P. Here, we give an example of a diffusion couple of Al-Ag. The optical microscopy image in Figure 

5-12 shows this diffusion couple's interfaces in a cross-sectional sample.  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5-12: Metallographic image of a diffusion couple Ag-Al annealed for 196 hours at 500˚C. Aluminum diffuses 

more rapidly than silver. An out equilibrium condition for the vacancy defects concentration thus arises. We note the 

porosity formed at the interface with aluminum due to the coalescence of vacancies. 

 

Figure 5-13 shows the variation of concentration in Ag as a function of the position within a diffusion 

couple of Al-Ag prepared by an 86-hour long annealing process at 500˚C. The concentration has been 

measured using a microprobe. We note the presence of a plateau at around . This plateau 

corresponds to the formation of the intermetallic phase . The position of the Matano plane, 

determined graphically (or by computer calculations), is found inside this phase. 
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Figure 5-13: Measured Ag concentration in Al-Ag diffusion couple and the Matano plane. 

Remark: we must note that the solution of (5.4) is not a function of the reduced variable . 

The problem is different because of the initial conditions. In the case of Einstein's solution, we are 

looking at a problem where a thin layer of substance B diffuses in a medium A. The initial condition 

is then . 

 

In the case of the Boltzmann-Matano solution, the diffusion problem is one where two species - A 

and B - interdiffusion from an initial state where they are separate. The initial condition is then 

, and where is a step function. We then have: 

 

 

 

Solving equation (5.23) with  
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From this result, we can write:  

 

 

                                                             and thus 

 

 

 
 

 

           with 

 

This solution is described in section 5.1.2, for example, c on interdiffusion. 

 

 

5.6 The Kirkendall Effect 
 

Frequently, in a diffusion couple, the diffusion coefficients of a species in another are different. This 

results in a physical displacement of the sample, which must be considered when determining the 

diffusion coefficients. The process can be described schematically in Figures 5-14 below. We suppose 

that DA>>DB. Then, the diffusion of A (substitutional) into B can only happen due to vacancies. If the 

number of vacancy sites in the lattice is constant, vacancies must be equally created and annihilated. 

 

From a fixed reference system, we would observe a flux of vacancies, which compensates for the flux 

of A (and of B): 

 

 

In other words, the flux of vacancies on the one hand and the excess of the flux of atoms on the other 

cause a displacement of the sample with respect to a fixed reference, which can be visualized by 

markers that do not diffuse. If the vacancies do not have the time to annihilate, they coalesce and 

form "Kirkendall porosity" (figure 5-12). 

 

The fluxes and are defined (5.22) by these equations: 

  

  

where are the intrinsic coefficients of diffusion or the more general Dehlinger-Darken 

coefficients (see eq. 5.23), and they are measured with respect to a plane of the crystal lattice.

(5.29) 

(5.30) 

(5.31) 
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Figure 5-14: Consecutive images of diffusion with the creation and annihilation of vacancy defects 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5-15: Kirkendall effect: the motion of vacancies and 

atoms causes the translation of the sample by Δx. The makers 

moved in the direction of the flux of vacancies of the same 

distance Δx with respect to the sample.
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The experimental measures cannot be taken to the sample coordinate system . We note that in this 

reference system, the vacancy process is only transient, and the total observed flux is zero since: 

 

 

 

and thus:  

 

 

The sample displacement relative to the crystal lattice is determined by the velocity of the vacancies 

(Kirkendall velocity). 

 

 with atomic volume 

 

Since , then and 

 

 

 

On the other hand, equation (5.32) implies that and thus: 

 

 

                                            (as                      ) 

 

If then V < 0. 

 

We can measure the Kirkendall effect experimentally, as described in Figure 5-16:  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-16: Kirkendall experiment showing the displacement of the reference attached to the initial interface. After 

diffusion, the wires have moved. This allows for measuring the velocity (V) 

 

Consider the reference of the sample . The Matano plane is linked to this system of coordinates. 

We know (5.33) that . and are defined by the diffusion equations with a new 

diffusion coefficient /, which has to be the same for A and B by symmetry. This change of coordinates 

implies: 

 

(5.32) 

(5.33) 

(5.34) 

W wires 

Initial 

interface 

Vacancies 

Kirkendall plane 



 

page 86 Chapter V Physics of materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As                     : 

 

 

 

This is the coefficient of interdiffusion. 

 

The concentration of each species is measured in the reference system of the sample and thus: 

 

 
 

As a consequence, the new diffusion equation is given by: 

 

 

 

 

Experimental method 

 

1) Measure with the Boltzmann-Matano method 

 

2) Obtain and by measuring the speed of the Kirkendall plane: 

 

  
 

In Figure 5-17, we graphically show (in an ideal case of perfect reciprocal solubility) the displacement 

of the Kirkendall plane relative to the Matano plane, which remains practically fixed. We can show 

that: 

 

B/A 

 

 

 

 

(5.35) 

(5.36) 

(5.37) 

(5.38) 
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Figure 5-17: At the beginning of diffusion, the Kirkendall plane and the Matano plane coincide; after that, the 

Kirkendall plane moves with the lattice, whereas the equality of the surfaces defines the Matano plane. 
 

 

5.7 Real solutions 
 

The solutions above do not apply to cases where the concentration varies over a long range and the 

solubility of the diffusing element is limited. 

The results showed a very different outcome (figure 5-19). This result can be understood if we 

compare it to the phase diagram of the Al-Ag alloy. 

Figure 5-18: Theoretical concentration profile of the alloy Ag-Al 
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Consider a diffusion couple formed by the assembly of an aluminum and a silver cube. At a 

temperature of ≈ 500˚C, Al diffuses in Ag and Ag in Al. From equation 5.5, we can predict a 

concentration-distance curve in Figure 5-18. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5-19: Concentration in the couple Ag-Al and binary phase diagram of the alloy 

 

Consequently, the preceding analysis regarding the thermodynamic equilibrium between phases must 

be reconsidered. We address this subject in Chapter XI. 


