Diffusion

CHAPTER V DIFFUSION

5.1 Fundamental equations of diffusion

Diffusion phenomena, i.e., the migration of atoms in the lattice, regulate the kinetics for many
material processes, such as phase transformations, thin film deposition, recrystallization, and plastic
deformations. Diffusion processes can be described using expressions of Fick's first and second laws.

5.1.1 Phenomenological equations

a) Fick s First Law

Zz— ,gradC, (5.1)

_ ol _
where [J41= 4 atoms A7 ™S = flux of atoms A

— v 3 — - -
[C41=4 atoms A/ €M" = concentration per unit volume of A

[D,1=cm®s™ = iffusion coefficient of A

aC . =
a—: =—div], (5.2)
b) Fick 5 Second Law (conservation equation)
Eliminating J4 between (5.1) and (5.2) and supposing that D is constant,
aC
a: =D,AC, (5.3)

which is called Fick's Second Law and has the same mathematical form as the heat equation.
This partial differential equation has been solved for many boundary conditions, though its use in
metallurgy is relatively limited, as demonstrated in later sections of this chapter.
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Proof for the one-dimensional case

a) Fick's First Law

J, . =-p, %

A.x A ax

J4x=flux of atoms A going through a unit surface
y perpendicular to the axis Ox per unit time.

Let a and I" be the distance and frequency of the atomic
jumps, respectively.

Then:
1 1
Jo = EFCA(x)a - EFCA(x+a)a
1 1 aC
o = Efa[CA(x)— C,(x+a)l= —Ef‘a2 a—;‘
- - ]. 2
From which we derive: D, = El“a
Figure 5-1: One-dimensional flux
c) Conservation equation
dV = Sdx
Ji dv J(x+d
(x)_... —— (x+dx) Let n the number of atoms A in dV
d J J
an _ -+ doys=-sL ax=- av
> dt ox ox
X X+dx dC dJ
dr dx

dC L .
where — =—divJ + 0, ¢ is a source term.
Figure 5-2: Flux through a volume element dV dt

5.1.2 Solutions to Fick's Second Law
We want to obtain a solution of form C(x,t) with specific boundaries and initial conditions.

a) Thin layer of an element B completely soluble in A

For example, B=A* can be a radioactive isotope of A. We have a Gaussian symmetric distribution.
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Figure 5-3 : Symmetric distribution

In t=0, C=0 except in x=0 where we have M atoms.

2
X

s (5.4)

Therefore:  C(x,t)=
2\ Dt

with M= IC(x, 1)dx

b) Surface coating

The solution is identical to the one for a thin layer, as seen in a).

C(x,1)= > M_ i (5.5)

Dt

Figure 5-4: Surface coating

C) Interdiffusion

t=0 CzCufor—°°<x<0
C=0 for 0<x<ee

=5 1-0[ % 5.6
C(x,1) 2{1 9(25)) (5.6)

2 1 o . .
X where 6'(y)=TIe“’ dz is the error function.
T 0

Figure 5-5: Concentration distribution during interdiffusion
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d) Diffusion from a surface

CO-Co _[{_pf % (5.7)
C,-C, (1 9(2@)}

Cois the initial concentration per unit volume of the species

X that diffuses, and Csis the surface concentration, e.g., in
0 carburization.

Figure 5-6: Distribution in the case of
diffusion from a surface.

5.2 Diffusion coefficient and random motion

This section describes how the diffusion coefficient can be derived from statistics laws. First, we
suppose that the atoms are located in a lattice. Then, the migration directions are defined by vectors

61 corresponding to the close-packed directions.

. . = 1 —
For instance, in the BCC structure: 6l = E(l,l,l) ‘5;| = #

and in the FCC structure: 55:%(1,1,0) 67| = iz
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Figure 5-7: Random path of an atom.
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L=Y3 (5.8)

We have: <L>=0

72
but the mean free path () =0

The second term in equation (5.9) is zero since it is always possible for any step 6L 1o find two

opposite steps o

()= <261> 81" =Tts1°

with ol = length of a jump
n = number of jJumps in time t
I' = jump frequency

but; L' =x*+y*+2* and in a cubic crystal: (x*)=(y*)=(z*)

from which (x*)= %(f?)

and thus (x*)= Trse (5.10)
3

Let us consider the particles that have traveled a path of + A(with A*> = <x2> ) in the time t and
calculate the flux of these particles through a surface S.

aC

—C( )A——C( +A)A_——A2
ox

e e — so that
2
x_> (5.11)

Einstein obtained this result in 1905, <x2> =2 D¢ With the quadratic path equaling 2 Dt.

Finally: D= %raf (5.12)

Physics of materials Chapter V page 73



This result is valid for a simple cubic crystal.
1
For a BCC crystal:D = El“a2

For an FCC crystal: D= %Fa2

Diffusion depends on the temperature: D=DT) gjnce I'=TT), (5.13)

=v,P ~10" Hz

where Vo is the frequency of vibration of the Debye atoms

AG,

e kT

P is the probability that the atom has sufficient energy to jump from one site P ~ to the other.

5.3 Self-diffusion

5.3.1 The mechanisms of diffusion

How do atoms migrate within a crystal? Figure 5-8 schematically shows the principal diffusion
mechanisms in a monoatomic crystal. We can list the following mechanisms:

1) Simple switch: the least probable (for example E, ~10 eV in Cu).
2) Cyclic switch: requires the simultaneous motion of several atoms.
3) Vacancy mechanism: the most probable. The atoms diffusing take the position of a vacant site.

4) Interstitial mechanism: This requires forming a valid self-interstitial for the interstitial impurities
O, C, and N, which is a probable mechanism in BCC metals.

5) Interstitials exchange: the mechanism relies on low probability correlated motion.

6) Crowdion: low probability correlated motion.
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Figure 5-8: Diffusion mechanisms
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5.3.2 Vacancy mechanism

The relation (5.12) is valid for interstitial diffusion but not quite for the diffusion of substitutional
atoms. This type of diffusion needs a free site to happen; in other words, it requires the presence of a
vacancy. Nevertheless, once the jump has occurred, it is highly probable that the atom diffuses back
to the site it has just left. To calculate the effective displacement of an atom throughout the crystal,
we have to consider the probability of multiple jumps. Thus, an atom can jump to a nearby vacancy
site if it overcomes the potential threshold for migration. The probability of the jump is given by

exp(-AGy'/KT) The probability of finding a vacancy in an adjacent site is given by 2Cvwhere Cv
is the concentration of vacancies, and z is the number of close neighbors. Thus, considering the
density of vacancies at equilibrium:

T'=v,2C, exp(~AG” / KT) = v, zexp(~AG” + AG’ / kT
1
and then D= gaszzexp(—AG{f +AG, / kT) (5.14)

Considering that AG = AH -TAS

D= %azvbzem((As;:’ +AS")/ k)exp(—(AH!" + AHE) / kT) = D, exp(—Q,, / kT) (5.15)

with D, = %aszz exp((AS]' + AS))/ k) (5.16)

Osp is called self-diffusion energy. This quantity can be measured in diffusion experiments (for
example, using radioactive trackers), which characterize diffusion's temperature sensitivity in a
monoatomic crystal.

54 Applied force to the diffusing particle: Einstein's equation

Consider first the random motion of a particle in a potential field characterized by jumps thermally
activated (figure 5-9 a). The average speed of atoms is given by:

V= %a(f"’ -T) (5.17)

AG,
where I'' =T =v,e ¥

v, =cte-v, ~10"s""

with "Vb being the frequency of vibration of the atom in its potential well (Debye

frequency).
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a)

b}

Figure 5-9: a) Diffusion is performed by jumps in a periodic potential. b) Effect of the application of a force

The factor of 1/2 comes from the fact that an atom cannot simultaneously perform a positive and

negative jump. In these conditions, V =0, On the other hand, if a force is applied to the atom, this
force is at work during the displacement and determines an inclination of the potential curve (figure
5-9 b) so that the following expressions can be written:

AG,+F? AG,-F*
- 2 _ 2
IMC=ve * IM=ve ¥
Fa
+-=

and the potential AG, js modified of 2

We conclude:

1 AG,( Fa _ Fa _ 1 _AG
V==ave ¥ | e} —¢ 27 Vz—dve ¥ —
2 0 2 0

1 _AG,
and letting D, =—=v,a’e
2 — D,F
— AT A
Vi==r (5.18)

Expression (5.18) is equivalent to expressing the force F arising from a potential. Consider the
combined effect of a concentration gradient and a force leading to a steady state condition. The flux
of particles due to the force F is given by:

J,=(V)C

The concentration gradient leads to an opposite flux.

J2=—D£
dx
dC
JZO:}DEZO/)C (5_19)
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Figure 5-10: Concentration gradient due to an external force

. . do
If F derives from a potential: F = i

We suppose that the distribution of concentration at equilibrium follows a Boltzmann distribution
adjusting to the variation of local potential determined by the introduction of the external force F:

C(x)=C,exp(—®(x)/kT) (5.20)

Thus: dac __C d®d_CF
us: dx kT dx kT (5.21)

Using this expression for the concentration in (5.19), we obtain the following:
wy=12

kT
which is the expression (5.18) derived previously.

As an example, we can show (in exercises, Nerst law) that an electric field E introduces an electric

._Cq’D
current; i=—+——E
T 2
) .. .. Cq°D
From which we can extract the electric ionic conductivity:0 = T

In the case that F is due to chemical forces, we let: F = —gradyl,
where pa is the chemical potential of A.

For an ideal solution, for instance, we show that (see Chapter XI):
u,=kT'lnX,

X,

where “4is the relative concentration of species A.

X,

Let us consider two atomic species, A and B, of concentration Caand Caand where Xxis the relative

concentration of species A. We show the development of species A here.
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)

_G.D, grady, = —MgradCA =—(D", - gradC,) (5.22)

J,=C
A A kT A kT oC,
with D", C D, a'uA
kT aC,

D%, is the intrinsic diffusion coefficient, sometimes called the Dehlinger-Darken diffusion
coefficient. Therefore, the diffusion equation becomes:

aac: = div(D" , gradC,) (5.23)

In the general case, the driving force of diffusion is not the concentration gradient but the gradient of
the chemical potential.

5.5 Diffusion couple: the Boltzmann-Matano method
Review of scaling laws. Example: gravitational law.

- GM —
x1(t)= _733:10)

%, @)
Consider planet 1 of mass m orbiting around the Sun (mass M), given x,(t=0)

Consider now the scaling law: t'=1t x',=Ax,

We then have:
G'MX/(t')
%]

X(t')=—

x(t=0)= Ax,(t =0)

Mx.(t)

‘ |

x(1)= —G —G' G

Consider another planet 2.
G'Mx,(t)

X (1) =—"=
of

X,(1=0)=Ax,(t=0)

Then, if G=G/ i.e.,, T /A =1 : x(t) and x,(t) , Is described by the same equations, the two planets
have similar trajectories. In particular:

BEEES
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This is Kepler's third law.

Similarly, we find a similar criterion in fluid mechanics with Reynold's number.

R= pvL
n
We apply the method described above to the problem of interdiffusion between two materials, A and

B, joined together in a diffusion couple. First, we determine the diffusion coefficient D*A, which
characterizes the diffusion from A to B or vice versa.

9 ixn=2(po
gc (x,1)= ax(Dax cl(x,t))

c(t=0)=c(x,0)

Changing the variable in ¥ =4x  1'=1t

) 0 0 ,

W c\(x',t)= g(D'gc'(x',r )) c'\(x,t)=c/(x,1)

%c'l(ﬂ,x,ﬂ)=a%(fﬁ %c'l(ﬂ,x,ﬂ)] ¢'(t =0) = c(Ax,0) (5.24)

Consider a new concentration distribution that obeys the same diffusion equation but with initial
conditions.
c(Ax,0)=c,(t=0)

d ) d
gcz(xz,tz) = E{Da—xzcz(xz,tz ))

From (5.24), we have that:

D’

=D (5.25)

This similarity can also be deduced from the expression (5.11) for the mean free path:

—2 2 =2 2 2
o= _AE _,pA i DA
t' T t T T

(5.26)

This cannot be derived in any other way, given that we derive the mean free path from the Gaussian
probability distribution, a diffusion equation solution.

As for gravitation, if D=D 'then 42 / =1. The diffusion processes are determined by initial conditions
¢1t=0)ang ©2(=0)give the same results on different scales.

We have: $ = ?
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This brings us to solve equation (5.23) with the reduced variable 1= -

Jt
a,_3(p 2
o ‘ax(Df*axcﬁ)

9 mad_ x 9
o otan 27 an
9 _dmd _ 19
dx 0dxon +ton

We obtain:

ndC, d ., dCA
LA~ |'D —
2 .dn dn dan

IndC

lcl
D" (C)=—~%—
40 2 dC, (5.27)

dnc

Writing this expression again in x and t variables:

[

deC

1l
2t dC
dx

D;(C)=- (5.28)

c

which can be easily measured experimentally.

>
0 X

Figure 5-11: Graphical method to determine the diffusion coefficient from the concentration profile of a diffusion couple.
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1 2
If we integrate from Cato €4 so as:

CZ CZ
fldc = _rxdc =0
o)

Ch

This condition sets the origin on the A or x-axis. Moreover, it determines the position of the so-called
"Matano plane,"” which separates the two equal areas (shaded area in Figure 5-11).

To determine the diffusion coefficient 2.(C)from a concentration profile, as shown in Figure 5-11,
we need to determine the position of the Matano plane graphically and then apply equation (5.28).

In this expression, the numerator represents the area delimited by the curve Cy= Ca(x), the Matano

el — . . .
plane, and the lines C1=Cuand €4=C  The denominator represents the slope of the tangent in point
P. Here, we give an example of a diffusion couple of Al-Ag. The optical microscopy image in Figure
5-12 shows this diffusion couple's interfaces in a cross-sectional sample.

Ag

Ag2A1

Al -

250 ym

Figure 5-12: Metallographic image of a diffusion couple Ag-Al annealed for 196 hours at 500 °C. Aluminum diffuses
more rapidly than silver. An out equilibrium condition for the vacancy defects concentration thus arises. We note the
porosity formed at the interface with aluminum due to the coalescence of vacancies.

Figure 5-13 shows the variation of concentration in Ag as a function of the position within a diffusion
couple of Al-Ag prepared by an 86-hour long annealing process at 500°C. The concentration has been

Ch/Cy=2

measured using a microprobe. We note the presence of a plateau at around . This plateau

corresponds to the formation of the intermetallic phase AgAL The position of the Matano plane,
determined graphically (or by computer calculations), is found inside this phase.
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Figure 5-13: Measured Ag concentration in Al-Ag diffusion couple and the Matano plane.

Remark: we must note that the solution of (5.4) is not a function of the reduced variable 1= x'!‘/;.
The problem is different because of the initial conditions. In the case of Einstein's solution, we are
looking at a problem where a thin layer of substance B diffuses in a medium A. The initial condition

is then

Cp(x,1=0)=5(x)

In the case of the Boltzmann-Matano solution, the diffusion problem is one where two species - A
and B - interdiffusion from an initial state where they are separate. The initial condition is then

Ca(x,1=0)=0(x) gng Ca(x,1=0)=0(=x)\yhere O(X) s a step function. We then have:

lim

ac,

=0 ax

=06(x)

Solving equation (5.23) with D*, = const
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atA =D ox? Ca
_ndC, _,. &

2 dﬁ - A d‘!]2 A

d T
an Catmy=ke

lim oC,

=0 X

=6(x)

1

dc

ox

_ocon_ 1
. onox +tom
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nm(ie'””“”ijza(x):k: !
=0 \Jr J4D;m

d 1
—C, =——=—exp[-n’/4D}]

an " fanD:
From this result, we can write: (n=x/ \/;)

aC 1 x
A exp[—x>/4D;t] and thus
ox J47rDjt

C,(x)=C,erf(e/2+D:t)

with erf(x)= % J.e_“zdz
T 0

This solution is described in section 5.1.2, for example, ¢ on interdiffusion.

5.6 The Kirkendall Effect

Frequently, in a diffusion couple, the diffusion coefficients of a species in another are different. This
results in a physical displacement of the sample, which must be considered when determining the
diffusion coefficients. The process can be described schematically in Figures 5-14 below. We suppose
that D4>>Dg. Then, the diffusion of A (substitutional) into B can only happen due to vacancies. If the
number of vacancy sites in the lattice is constant, vacancies must be equally created and annihilated.

From a fixed reference system, we would observe a flux of vacancies, which compensates for the flux
of A (and of B):

J,+J,+J,=0 (5.29)

In other words, the flux of vacancies on the one hand and the excess of the flux of atoms on the other
cause a displacement of the sample with respect to a fixed reference, which can be visualized by
markers that do not diffuse. If the vacancies do not have the time to annihilate, they coalesce and
form "Kirkendall porosity" (figure 5-12).

The fluxes Y4and Yz are defined (5.22) by these equations:

,dC 5.30
JA =_DA axA ( )
* aCB
JBZ_DBB_X (531)

where D“are the intrinsic coefficients of diffusion or the more general Dehlinger-Darken
coefficients (see eq. 5.23), and they are measured with respect to a plane of the crystal lattice.
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creation of vacancies in B
with formation of a dislocation

diffusion of A in B with
diffusion of vacancies of Bin A

annihilation of vacancies in A
with deformation of the sample

Figure 5-14: Consecutive images of diffusion with the creation and annihilation of vacancy defects

Figure 5-15: Kirkendall effect: the motion of vacancies and
atoms causes the translation of the sample by 4x. The makers
moved in the direction of the flux of vacancies of the same
distance Ax with respect to the sample.
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The experimental measures cannot be taken to the sample coordinate system S0 We note that in this
reference system, the vacancy process is only transient, and the total observed flux is zero since:

C,+C, =const (5.32)
and thus: Ji+79=0 (5.33)
The sample displacement relative to the crystal lattice is determined by the velocity of the vacancies
(Kirkendall velocity).

V=JQ with € =atomic volume

since PA# D5 then Y4 # s and
V=—(J,+J,)Q (5.34)

9C, __9C,
On the other hand, equation (5.32) implies that ox 0x and thus:

X,

V=(D,-Dy) o

(as X,=C,-Q )

If Pi>Dxthen v <0.

We can measure the Kirkendall effect experimentally, as described in Figure 5-16:

W wires Vv
/
d -\Vacancies
A - B A . B

A

\ Initial l

. Kirkendall plane
interface

Figure 5-16: Kirkendall experiment showing the displacement of the reference attached to the initial interface. After
diffusion, the wires have moved. This allows for measuring the velocity (V)

Consider the reference of the sample So. The Matano plane is linked to this system of coordinates.

We know (5.33) that T+ Ty =0, I, and Ty are defined by the diffusion equations with a new
diffusion coefficient /, which has to be the same for A and B by symmetry. This change of coordinates
implies:

Physics of materials Chapter V page 85



i o (539)

J=-D Jo=-D
4 ox ° ox
JS=J,+VC, =—D:2&+VCA
X
(5.36)
Jy=J,+VC, =—D;a&+vcg
dx
,9C + ey 9C ) X ..oC
J=-D; a; +(D.-D; )a—; X,=—(D;-X,D.+X,D}) a;
AS ]-_ XA = XB
D=X,D;+X,D; (5.37)
This is the coefficient of interdiffusion.
The concentration of each species is measured in the reference system of the sample and thus:
9C, __9J;
ot ox
As a consequence, the new diffusion equation is given by:
aC, d ( ~ dC )
—A=—|D—2 5.38
ot dx ox ( )

Experimental method

1) Measure D with the Boltzmann-Matano method
2) Obtain D} and Ds by measuring the speed of the Kirkendall plane:
V=(D; —D;)—aXf‘
dx

In Figure 5-17, we graphically show (in an ideal case of perfect reciprocal solubility) the displacement
of the Kirkendall plane relative to the Matano plane, which remains practically fixed. We can show
that:

D%y I Dy =g
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Figure 5-17: At the beginning of diffusion, the Kirkendall plane and the Matano plane coincide; after that, the
Kirkendall plane moves with the lattice, whereas the equality of the surfaces defines the Matano plane.

5.7 Real solutions

The solutions above do not apply to cases where the concentration varies over a long range and the

solubility of the diffusing element is limited.
The results showed a very different outcome (figure 5-19). This result can be understood if we

compare it to the phase diagram of the Al-Ag alloy.

Acﬂg

Al Ag

» X

Figure 5-18: Theoretical concentration profile of the alloy Ag-Al
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Consider a diffusion couple formed by the assembly of an aluminum and a silver cube. At a
temperature of = 500°C, Al diffuses in Ag and Ag in Al. From equation 5.5, we can predict a
concentration-distance curve in Figure 5-18.

A C Temperature, °C g
Ag O -8 4 ¥}
&
Al 0Ag Ag
—_— —_— —_— —_— —_— —_— -_—
* —_— —_— —_— —_— L] —_— -_—
../ g i
3 €
e i e - e o e - - - % %
Y| > >
3 1 8
.-s
oAl "
W gem  fom | EEE EE EEE ESE S S S .
e
> £
28 g

DI57099

Figure 5-19: Concentration in the couple Ag-Al and binary phase diagram of the alloy

Consequently, the preceding analysis regarding the thermodynamic equilibrium between phases must
be reconsidered. We address this subject in Chapter XI.
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